Abstract

The effect of cyclic AMP (cAMP) on the chlamydial growth cycle was studied with Chlamydia trachomatis-infected HeLa cells. At concentrations of 1 mM, cAMP had a profound effect on the chlamydial developmental cycle, resulting in small, immature inclusions. Immunoblot analysis revealed the absence of elementary body (EB)-specific antigens in the cAMP-treated cells. This effect was observed only if cAMP was added within the first 12 h of incubation and continued thereafter. Its withdrawal at any time from the medium led to the reappearance of fully mature, infectious organisms. Analogs or breakdown products of cAMP exerted no inhibitory effect on chlamydial development. Intracellular inclusions from the cAMP-treated cells were unable to infect fresh HeLa monolayers, in contrast to the completely infectious nontreated inclusions. Protein profiles of the cAMP-treated organisms (at any time point) resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis very closely resembled reticulate bodies (RB) and did not possess characteristic EB-binding proteins. Collectively, these observations suggest an inhibitory role for cAMP at the RB stage of intracellular development. We also identified a cAMP receptor protein which is associated with RB and not with EB, further supporting a role for this system in the developmental regulation of chlamydiae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call