Abstract

Chemosensory dendritic membranes (olfactory cilia) contain protein kinase activity that is stimulated by cyclic AMP and more efficiently by the nonhydrolyzable GTP analog guanosine-5'-O-(3-thio)triphosphate (GTP gamma S). In control nonsensory (respiratory) cilia, the cyclic AMP-dependent protein kinase is practically GTP gamma S-insensitive. GTP gamma S activation of the olfactory enzyme appears to be mediated by a stimulatory GTP-binding protein (G-protein) and adenylate cyclase previously shown to be enriched in the sensory membranes. Protein kinase C activity cannot be detected in the chemosensory cilia preparation under the conditions tested. Incubation of olfactory cilia with [gamma-32P]ATP leads to the incorporation of [32P]phosphate into many polypeptides, four of which undergo covalent modification in a cyclic nucleotide-dependent manner. The phosphorylation of one polypeptide, pp24, is strongly and specifically enhanced by cyclic AMP at concentrations lower than 1 microM. This phosphoprotein is not present in respiratory cilia, but is seen also in membranes prepared from olfactory neuroepithelium after cilia removal. Cyclic AMP-dependent protein kinase and phosphoprotein pp24 may be candidate components of the molecular machinery that transduces odor signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.