Abstract
We studied how stimulation of protein kinase C and cAMP-dependent protein kinases affect the development of mesencephalic dopaminergic neurons in primary cell cultures derived from fetal rats at embryonic day E14. The effects of compounds which activate these second messenger systems were compared to those of basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). In mesencephalic cultures, there was a continuous loss of dopaminergic neurons. Despite this decline in cell number, neurotransmitter uptake per neuron increased with time, indicating that the surviving dopaminergic neurons continued their biochemical differentiation while others degenerated. IGF-I and bFGF did not affect the number of dopaminergic neurons. However, dopamine uptake per neuron was significantly higher in bFGF and IGF-I treated cultures, suggesting that these factors stimulated differentiation. Protein kinase C and cAMP-dependent protein kinases were not involved in mediating the effects of bFGF and IGF-I. Treatment of cultures with phorbol esters did not affect dopamine uptake, whereas elevated levels of intracellular cAMP resulted in an increase in dopamine uptake which was additive to that elicited by bFGF or IGF-I. Further analysis revealed that exposure of mesencephalic cultures to dibutyryl cAMP (dbcAMP) during the first 3 days after plating increased the survival of dopaminergic neurons, whereas prolonged treatment attenuated the development of the dopamine uptake system. Moreover, cyclic AMP, but not bFGF, was able to prevent the degeneration of dopaminergic neurons induced by 1-methyl-4-phenyl-pyridinium ion (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results suggest that increased intracellular levels of cAMP protect dopaminergic neurons in situations of stress like the process of dissociation and plating or the exposure to neurotoxic compounds. Our results reveal novel possibilities for the treatment of Parkinson's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.