Abstract
Cyclic AMP stimulates HCO3 secretion and Cl self-exchange in rabbit cortical collecting tubule. We found that varying peritubular [Cl] changed the Cl self-exchange rate with saturation kinetics (Km, 3-4 mM). HCO3 secretion also showed saturation kinetics as a function of mean luminal [Cl] (Km, 4-11 mM). Both Cl self-exchange and Cl-HCO3 exchange thus appear to be carrier-mediated. Addition/removal of basolateral HCO3 qualitatively changed Cl and HCO3 transport as expected for Cl-HCO3 exchange, but quantitatively changed Cl absorption more than HCO3 secretion. The diffusive Cl permeability and the transepithelial conductance in the presence of HCO3/CO2 and cAMP were higher than in their absence suggesting that HCO3/CO2 and cAMP together increase a conductive Cl pathway parallel to a 1:1 Cl-HCO3 exchanger. Thus, cAMP not only stimulates the overall process of anion exchange (probably by increasing an electroneutral exchanger and/or a series Cl conductance), but also stimulates a Cl conductance parallel to the exchange process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.