Abstract

Activation of the extracellular signal-regulated kinase (ERK) in the striatum is crucial for long-term behavioral alterations induced by drugs of abuse. In response to cocaine, ERK phosphorylation (i.e., activation) is restricted to medium-sized spiny neurons expressing dopamine D1 receptor (D1R) and depends on a concomitant stimulation of D1R and glutamate N-methyl-D-aspartate receptor (NMDAR). However, the mechanisms responsible for this activation, especially the respective contribution of D1R and NMDAR, remain unknown. We studied striatal neurons in culture stimulated with D1R agonist and/or glutamate and wild-type or genetically modified mice treated with cocaine. Biochemical, immunohistochemical, and imaging studies were performed. Mice were also subjected to behavioral experiments. Stimulation of D1R cannot activate ERK by itself but potentiates glutamate-mediated calcium influx through NMDAR that is responsible for ERK activation. Potentiation of NMDAR by D1R depends on a cyclic adenosine monophosphate-independent signaling pathway, which involves tyrosine phosphorylation of the NR2B subunit of NMDAR by Src family kinases. We also demonstrate that the D1R/Src family kinases/NR2B pathway is responsible for ERK activation by cocaine in vivo. Inhibition of this pathway abrogates cocaine-induced locomotor sensitization and conditioned place preference. Our results show that potentiation of NR2B-containing NMDAR by D1R is necessary and sufficient to trigger cocaine-induced ERK activation. They highlight a new cyclic adenosine monophosphate-independent pathway responsible for the integration of dopamine and glutamate signals by the ERK cascade in the striatum and for long-term behavioral alterations induced by cocaine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.