Abstract

We consider the problem of finding some structure in the zero-nonzero pattern of a low rank matrix. This problem has strong motivation from theoretical computer science. Firstly, the well-known problem on rigidity of matrices, proposed by Valiant as a means to prove lower bounds on some algebraic circuits, is of this type. Secondly, several problems in communication complexity are also of this type. The special case of this problem, where one considers positive semidefinite matrices, is equivalent to the question of arrangements of vectors in euclidean space so that some condition on orthogonality holds. The latter question has been considered by several authors in combinatorics [1, 4]. Furthermore, we can think of this problem as a kind of Ramsey problem, where we study the tradeoff between the rank of the adjacency matrix and, say, the size of a largest complete subgraph. In this paper we show that for an real matrix with nonzero elements on the main diagonal, if the rank is o(n), the graph of the nonzero elements of the matrix contains certain cycles. We get more information for positive semidefinite matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.