Abstract
A continuous culture of Saccharomyces cerevisiae IFO 0233, growing with glucose as the major carbon and energy source, shows oscillations of respiration with a period of 48 min. Samples taken at maxima and minima indicate that (i) periodic changes do not occur as a result of carbon depletion, (ii) intrinsic differences in respiratory activity occur in washed organisms and (iii) a respiratory inhibitor accumulates during respiratory oscillations. Plasma membrane and inner mitochondrial membranes generate transmembrane electrochemical potentials; changes in these can be respectively assessed using anionic or cationic fluorophores. Thus flow cytometric analyses indicated that an oxonol dye [DiBAC(4)(3); bis(1,3-dibutylbarbituric acid)trimethine oxonol] was excluded from yeasts to a similar extent (in >98% of the population) at all stages, showing that the plasma membrane potential was maintained at a steady value. However, uptake of Rhodamine 123 was greatest at that phase characterized by a low respiratory rate. Addition of uncouplers of energy conservation [CCCP (m-chlorocarbonylcyanide phenylhydrazone) or S-13(5-chloro-3-t-butyl-2-chloro-4(1)-nitrosalicylanilide)] to the continuous cultures increased the respiration, but had only a transient effect on the period of the oscillation. Electron microscopy showed changes in mitochondrial ultrastructure during the respiratory oscillation. At low respiration the cristae were more clearly defined due to swelling of the matrix; this corresponds to the 'orthodox' conformation. When respiration was high the mitochondrial configuration was 'condensed'. It has been shown previously that a temperature-compensated ultradian clock operates in S. cerevisiae. It is proposed that mitochondria undergo cycles of energization in response to energetic demands driven by this ultradian clock output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.