Abstract
Recently Lazar and Wachs proved two new permutation models, called D-permutations and E-permutations, for Genocchi and median Genocchi numbers. In a follow-up, Eu et al. studied the even-odd descent permutations, which are in bijection with E-permutations. We generalize Eu et al.'s descent polynomials with eight statistics and obtain an explicit J-fraction formula for their ordinary generaing function. The J-fraction permits us to confirm two conjectures of Lazar-Wachs about cycles of D and E permutations and obtain a (p,q)-analogue of Eu et al.'s gamma-formula. Moreover, the (p,q) gamma-coefficients have the same factorization flavor as the gamma-coefficients of Brändén's (p,q)-Eulerian polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.