Abstract

For dynamical systems possessing invariant subspaces one can have a robust homoclinic cycle to a chaotic set. If such a cycle is stable, it manifests itself as long periods of quiescent chaotic behaviour interrupted by sudden transient 'bursts'. The time between the transients increases as the trajectory approaches the cycle. This behavior for a cycle connecting symmetrically related chaotic sets has been called 'cycling chaos' by Dellnitz et al. [IEEE Trans. Circ. Sys. I 42, 821-823 (1995)]. We characterise such cycles and their stability by means of normal Lyapunov exponents. We find persistence of states that are not Lyapunov stable but still attracting, and also states that are approximately periodic. For systems possessing a skew-product structure (such as naturally arises in chaotically forced systems) we show that the asymptotic stability and the attractivity of the cycle depends in a crucial way on what we call the footprint of the cycle. This is the spectrum of Lyapunov exponents of the chaotic invariant set in the expanding and contracting directions of the cycle. Numerical simulations and calculations for an example system of a homoclinic cycle parametrically forced by a Rossler attractor are presented; here we observe the creation of nearby chaotic attractors at resonance of transverse Lyapunov exponents. (c) 1997 American Institute of Physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.