Abstract
Let G bea triangle-free graph of order n and minimum degree δ > n/3. We will determine all lengths of cycles occurring in G. In particular, the length of a longest cycle or path in G is exactly the value admitted by the independence number of G. This value can be computed in time O(n 2.5) using the matching algorithm of Micali and Vazirani. An easy consequence is the observation that triangle-free non-bipartite graphs with \(\delta \geqslant \frac{3} {8}n\) are hamiltonian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.