Abstract

Localized muscle fatigue (LMF) during a repetitive task can be influenced by several aspects such as the level and duration of exertions. Among these aspects, though, the influence of cycle time remains unclear. Here, the effect of cycle time on LMF and performance was examined for a simple biomechanical system during repetitive static efforts. Participants performed 1-h trials of intermittent isometric index finger abduction with a duty cycle of 50% in all combinations of two cycle times (30 and 60s) and two exertion levels (15% and 25% of maximum voluntary capacity). Measures of discomfort, performance (force fluctuations), and muscle capacity (voluntary strength and low-frequency twitch responses) were obtained, all of which demonstrated a beneficial effect of the 30s cycle time. Specifically, the shorter cycle time led to lower rates of increase in perceived discomfort, lower rates of increase in force fluctuations, lower rates of decrease in voluntary capacity, and smaller changes in twitch responses. These benefits, reflecting less LMF development in the shorter cycle time, were quite consistent between genders and the two levels of effort. Results of this study can be used to modify current models predicting work–rest allowance and/or LMF, helping to enhance performance and reduce the risk of adverse musculoskeletal outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call