Abstract

We studied the effects of pharmacologic probes that affect predominantly the Na inward current [tetrodotoxin (TTX), lidocaine], the slow inward current [cobalt, isoproterenol, verapamil], and the potassium currents [tetraethylammonium chloride (TEA), SG-75] on the duration of the action potential (APD) of canine cardiac Purkinje fibers during steady state and restitution. A schema is proposed in which the APD during steady state or restitution is determined by three factors: maximum action potential duration (APDmax), kinetics of restitution, and "memory." The predicted APDmax was 469 +/- 34 (SE) ms (n = 27) in control. It was prolonged (P less than 0.05) by cobalt, verapamil, and TEA and shortened (P less than 0.05) by TTX, lidocaine, isoproterenol, and SG-75. In control, the kinetics of restitution were described by a sum of two exponentials with time constant T1 = 137 +/- 9 ms and T2 = 1,665 +/- 135 ms (n = 27), respectively. T1 was prolonged (P less than 0.05) by TTX, lidocaine, and verapamil but was not changed by other probes. None of the probes studied altered the T2 of restitution or the memory factor, computed at a cycle length of 500 ms from the predicted APDmax and the plateau of restitution. Low temperature (31 degrees C) prolonged APDmax and T1 and reduced the memory. We conclude that each of the proposed three factors is controlled by different mechanisms and that a TTX-sensitive current appears to contribute to the process of restitution of APD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.