Abstract

For nonequilibrium systems described by finite Markov processes, we consider the number of times that a system traverses a cyclic sequence of states (a cycle). The joint distribution of the number of forward and backward instances of any given cycle is described by universal formulas which depend on the cycle affinity, but are otherwise independent of system details. We discuss the similarities and differences of this result to fluctuation theorems, and generalize the result to families of cycles, relevant under coarse graining. Finally, we describe the application of large deviation theory to this cycle-counting problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call