Abstract
The Internet of Things (IoT) is increasingly becoming a part of our daily lives, raising significant concerns about future cybersecurity risks and the need for reliable solutions. This study conducts a comprehensive systematic literature review to examine the various challenges and attacks threatening IoT cybersecurity, as well as the proposed frameworks and solutions. Furthermore, it explores emerging trends and identifies existing gaps in this domain. The study’s novelty lies in its extensive exploration of machine learning techniques for detecting and countering IoT threats. It also contributes by highlighting research gaps in economic impact assessment and industrial IoT security. The systematic review analyzes 40 articles, providing valuable insights and guiding future research directions. Results show that privacy issues and cybercrimes are the primary concerns in IoT security, and artificial intelligence holds promise for future cybersecurity. However, some attacks remain inadequately addressed by existing solutions, such as confidentiality, security authentication, and data server connection attacks, necessitating further research and real-life testing of proposed remedies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.