Abstract

Big data brings new opportunities to discover the new value of healthcare industry, since it can help us understand the hidden value of data deeply. This also brings new challenges: how to effectively manage and organize these datasets. Throughout the whole life cycle of publishing, storing, mining, and using big data in health care, different users are involved, so there are corresponding privacy protection methods and technologies for different life cycles. Data usage is the last and most important part of the whole life cycle. Therefore, this article proposes a privacy protection method for large medical data: an access control based on credibility of the requesting user. This model evaluates and quantifies doctors' credibility from the perspective of behavioral trust. Comparative experiments show that under the background of linear, geometric and exponential distribution trends and mixed trends, the regression model in this article is better than the existing methods in predicting trust accuracy and trust trends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.