Abstract
As the sizes of IT infrastructure continue to grow, cloud computing is a natural extension of virtualisation technologies that enable scalable management of virtual machines over a plethora of physically connected systems. The so-called virtualisation-based cloud computing paradigm offers a practical approach to green IT/clouds, which emphasise the construction and deployment of scalable, energy-efficient network software applications ( NetApp) by virtue of improved utilisation of the underlying resources. The latter is typically achieved through increased sharing of hardware and data in a multi-tenant cloud architecture/environment and, as such, accentuates the critical requirement for enhanced security services as an integrated component of the virtual infrastructure management strategy. This paper analyses the key security challenges faced by contemporary green cloud computing environments, and proposes a virtualisation security assurance architecture, CyberGuarder, which is designed to address several key security problems within the ‘green’ cloud computing context. In particular, CyberGuarder provides three different kinds of services; namely, a virtual machine security service, a virtual network security service and a policy based trust management service. Specifically, the proposed virtual machine security service incorporates a number of new techniques which include (1) a VMM-based integrity measurement approach for NetApp trusted loading, (2) a multi-granularity NetApp isolation mechanism to enable OS user isolation, and (3) a dynamic approach to virtual machine and network isolation for multiple NetApp’s based on energy-efficiency and security requirements. Secondly, a virtual network security service has been developed successfully to provide an adaptive virtual security appliance deployment in a NetApp execution environment, whereby traditional security services such as IDS and firewalls can be encapsulated as VM images and deployed over a virtual security network in accordance with the practical configuration of the virtualised infrastructure. Thirdly, a security service providing policy based trust management is proposed to facilitate access control to the resources pool and a trust federation mechanism to support/optimise task privacy and cost requirements across multiple resource pools. Preliminary studies of these services have been carried out on our iVIC platform, with promising results. As part of our ongoing research in large-scale, energy-efficient/green cloud computing, we are currently developing a virtual laboratory for our campus courses using the virtualisation infrastructure of iVIC, which incorporates the important results and experience of CyberGuarder in a practical context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.