Abstract

The estimation of distribution algorithm (EDA) aims to explicitly model the probability distribution of the quality solutions to the underlying problem. By iterative filtering for quality solution from competing ones, the probability model eventually approximates the distribution of global optimum solutions. In contrast to classic evolutionary algorithms (EAs), EDA framework is flexible and is able to handle inter variable dependence, which usually imposes difficulties on classic EAs. The success of EDA relies on effective and efficient building of the probability model. This paper facilitates EDA from the adaptive memory programming (AMP) domain which has developed several improved forms of EAs using the Cyber-EA framework. The experimental result on benchmark TSP instances supports our anticipation that the AMP strategies can enhance the performance of classic EDA by deriving a better approximation for the true distribution of the target solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.