Abstract
This paper introduces a novel detection method for phishing website attacks while avoiding the issues associated with the deficiencies of the knowledge-based representation and the binary decision. The suggested detection method was performed using Fuzzy Rule Interpolation (FRI). The FRI reasoning methods added the benefit of enhancing the robustness of fuzzy systems and effectively reducing the system’s complexity. These benefits help the Intrusion Detection System (IDS) to generate more realistic and comprehensive alerts in case of phishing attacks. The proposed method was applied to an open-source benchmark phishing website dataset. The results show that the proposed detection method obtained a 97.58% detection rate and effectively reduced the false alerts. Moreover, it effectively smooths the boundary between normal and phishing attack traffic because of its fuzzy nature. It has the ability to generate the required security alert in case of deficiencies in the knowledge-based representation. In addition, the results obtained from the proposed detection method were compared with other literature results. The results showed that the accuracy rate of this work is competitive with other methods. In addition, the proposed detection method can generate the required anti-phishing alerts even if one of the anti-phishing sparse rules does not cover some input parameters (observations).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.