Abstract

Additive Manufacturing (AM) requires integrated networking, embedded controls and cloud computing technologies to increase their efficiency and resource utilisation. However, currently there is no readily applicable system that can be used for cloud-based AM. The objective of this research is to develop a framework for designing a cyber additive manufacturing system that integrates an expert system with Internet of Things (IoT). An Artificial Neural Network (ANN) based expert system was implemented to classify input part designs based on CAD data and user inputs. Three ANN algorithms were trained on a knowledge base to identify optimal AM processes for different part designs. A two-stage model was used to enhance the prediction accuracy above 90% by increasing the number of input factors and datasets. A cyber interface was developed to query AM machine availability and resource capability using a Node-RED IoT device simulator. The dynamic AM machine identification system developed using an application programme interface (API) that integrates inputs from the smart algorithm and IoT interface for real-time predictions. This research establishes a foundation for the development of a cyber additive design for manufacturing system which can dynamically allocate digital designs to different AM techniques over the cyber network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.