Abstract

In this work, we have synthesized efficient antibacterial compounds with anticancer novel molecules based on cyanuric chloride containing chalcone moiety. For this, novel triazine-based organic molecules were synthesized by using cyanuric chloride and 2,4-dichloro-1-ene(4-hydroxyphenyl)phenone and characterized by elemental analysis, FT-IR, NMR and UV-visible spectrometry techniques. Melting point of the molecules were increased with an increase in substitution on cyanuric chloride. The minimum inhibitory concentration (MIC) value of the synthesized compounds showed an excellent result on Gram-negative bacteria with low MIC value of 1.95 μg/mL. Gram-positive bacteria showed little resistance to the synthesized drug. The synthesized compounds were tested for their use as an anticancer drug using in silico screening method. The synthesized compounds in silico molecular docking method using breast cancer protein (BRCA2) confirms that triazine derivative with all three chlorine molecules replaced by 2,4-dichloro-1-ene(4-hydroxyphenyl)phenone showed highest binding energy with the value of -9.1900 Kcal/mol which is in agreement with the observed high MIC value obtained for Gram-negative bacteria. The synthesized molecules preferentially targeted the topoisomerase II of the bacteria. Overall, an efficient antimicrobial drug is synthesized using a simple preparation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.