Abstract

Two isomeric host materials (Sy and Asy) comprising carbazole (donor) and CN-substituted pyrimidine (acceptor) were synthesized, characterized, and utilized as host materials for green and blue thermally activated delayed fluorescence (TADF) organic light emitting diodes (OLEDs). Both molecules have high triplet energy and small energy difference between singlet and triplet states, leading to feasible TADF. The different linking topologies of carbazole and CN groups on the pyrimidine core provide distinct photophysical properties and molecular packing manners, which further influence the efficiency as they served as hosts in TADF OLEDs. As compared to Asy-based cases, the Sy-hosted TADF OLED device gave higher maximum external quantum efficiencies (EQE) of 24.0% (vs 22.5%) for green (4CzIPN as a dopant) and 20.4% (vs 15.0%) for blue (2CzTPN as a dopant) and low efficiency roll-off. The high horizontal dipole ratio (Θ ≈ 88%) for both emitters dispersed in Sy and Asy hosts accounts for the high device efficiency. A clear molecular structure-physical property-device performance relationship has been established to highlight the importance of symmetrical structure in TADF host material design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.