Abstract

Cyanophycin (CGP) is a polypeptide consisting of amino acids—aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations.Key points• Cyanophycin was crosslinked by 5 different methods• Crosslinked cyanophycin is non-cytotoxic to L929 cells• Crosslinked cyanophycin is a promising new material for scaffolding purposesGraphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.