Abstract

The response to salinity of a Scytonema species isolated from the central Australian desert was studied. Under nitrogen-fixing conditions the addition of increasing concentrations of salt (NaCl) caused progressive inhibition of growth, with growth ceasing at 150 mM NaCl. This correlated with a progressive loss of nitrogenase activity, a low level of activity being retained at 150 mM NaCl. The inhibition of growth was overcome when KNO3 (10 mM) was added to the growth medium. In response to the salt stress, cells accumulated the reserve compounds cyanophycin and glycogen. Time course experiments showed that they were steadily synthesized over 48 h, after which the concentrations stabilized. Cyanophycin synthesis was enhanced in salt-stressed cells grown in nitrate. When cells were restored to their normal growth medium the content of these substances decreased towards control levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.