Abstract

Polymer-based solid electrolyte boasting ultra-high safety, energy density, mechanical strength and flexibility, attracting much attention in the field of battery applications. However, its widespread application is hindered by the low conductivity, insufficient aluminium salt dissociation, high crystallization degree, short service life, etc. To solve the above problems, a composite solid polymer electrolyte (SPE) design based on polyethylene oxide (PEO, Mw = 6 000 000) with AlCl3·6H2O as aluminum salt and butanedinitrile (SN) as plasticizer is proposed in this paper. The disorder and mobility of the PEO chains, conductivity, degree of aluminum salt dissociation, and service life are enhanced by the addition of plasticizer SN. Theoretical calculation demonstrates the formation of solvated sheath-like structure [SN…Al3+] has strong interactions with the polymer PEO, allowing rapid transport of Al3+ through the polymer segments. These results are also further verified by subsequent tests, which can reveal the Al3+ transport mechanism of room-temperature SPEs in a more reasonable way. Meanwhile, the relatively strong binding energy between PEO and SN can help to avoid the parasitic reaction between SN and Al, increase the service life of solid-state aluminium-ion batteries. Providing a promising solution for the design of solid-state battery electrolytes that can be applied at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.