Abstract

Ionic liquids can replace conventional solvents in aromatic/aliphatic extractions, if they have higher aromatic distribution coefficients and higher or similar aromatic/aliphatic selectivities. Also physical properties, such as density and viscosity, must be taken into account if a solvent is applied in an industrial extraction process. Cyano-containing ionic liquids have a lower density than the benchmark solvent sulfolane and a higher viscosity. Sulfolane is from a hydrodynamic point of view a better solvent than ionic liquids for the aromatic/aliphatic extraction. The most suitable ionic liquids for the extraction of aromatic hydrocarbons from a mixture of aromatic and aliphatic hydrocarbons are [bmim]C(CN)3, [3-mebupy]N(CN)2, [3-mebupy]C(CN)3, [3-mebupy]B(CN)4 and [mebupyrr]B(CN)4. They have factors of 1.2–2.3 higher mass-based distribution coefficients than sulfolane and a similar or higher, up to a factor of 1.9 higher, aromatic/aliphatic selectivity than sulfolane. The IL [3-mebupy]N(CN)2 is a better extractant for the separation of toluene from a mixture of toluene/n-heptane in a pilot plant Rotating Disc Contactor (RDC) than sulfolane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.