Abstract

In cyanobacteria, phycobilisomes (PBS) act as antennae of the photosynthetic pigment apparatus. They contain brightly colored phycobiliproteins (PBP) and form giant supramolecular complexes (up to 3000-7000 kDa) containing 200 to 500 phycobilin chromophores covalently bound to the proteins. Over ten various PBP are known, which fall into three groups: phycoerythrins, phycocyanins, and allophycocyanins. Hollow disks of PBP trimers and hexamers are arranged into cylinders by colorless linker proteins; the cylinders are then assembled into PBS. Typical semidiscoid PBS consist of a central nucleus formed by three allophycocyanin cylinders and of six lateral cylinders consisting of other PBP and attached as fans to the nucleus. The PBS number, size, and pigment composition in cyanobacteria depend on illumination and other ambient factors. While PBS have certain advantages compared to other antennae, these pigment-protein complexes require more energy than the chlorophyll a/b- and chlorophyll a/c-proteins of oxygenic photosynthetic organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call