Abstract

The D1 polypeptide of the photosystem II (PSII) reaction center complex contains domains that regulate primary photochemical yield and charge recombination rate. Many prokaryotic oxygenic phototrophs express two or more D1 isoforms differentially in response to environmental light needs, a capability absent in flowering plants and algae. We report that tobacco (Nicotiana tabacum) plants carrying the Synechococcus (Synechococcus elongatus PCC 7942) low-light mutation (LL-E130Q) in the D1 polypeptide (NtLL) acquire the cyanobacterial photochemical phenotype: faster photodamage in high light and significantly more charge separations in productive linear electron flow in low light. This flux increase produces 16.5% more (dry) biomass under continuous low-light illumination (100 μE m-2 s-1, 24 h). This gain is offset by the predicted lower photoprotection at high light. By contrast, the introduction of the Synechococcus high-light mutation (HL-A152S) into tobacco D1 (NtHL) has slightly increased photoprotection, achieved by photochemical quenching, but no apparent impact on biomass yield compared to wild type under the tested conditions. The universal design principle of all PSII reaction centers trades off energy conversion for photoprotection in different proportions across all phototrophs and provides a useful guidance for testing in crop plants. The observed biomass advantage under continuous low light can be transferred between evolutionarily isolated lineages to benefit growth under artificial lighting conditions. However, removal of the selective marker gene was essential to observe the growth phenotype, indicating growth penalty imposed by use of the particular spectinomycin-resistance gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.