Abstract

Excessive use of herbicides in agricultural fields has become a major environmental concern due to the negative effects on the ecosystem. Microbial degradation has been well-known as an effective approach for combating such non-natural substances in soil. In the present study, the degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a result of metabolic activities of a cyanobacterium Nostoc muscorum Meg 1 was investigated using GC–MS analysis. After seven days of 2,4-D exposure, the main residue obtained was 2,4-dichlorophenol (2,4-DCP) at RT: 8.334 (confirmed using NIST library). The effects of 2,4-DCP were studied in a cyanobacterium Nostoc muscorum Meg 1 isolated from a rice field where 2,4-D is commonly used. Exposure to 2,4-DCP at 20, 40, and 80 ppm significantly increased ROS production in the cyanobacterium by 74, 107, and 211 % (p < 0.001). With rising 2,4-DCP concentrations in the surroundings, lipid peroxidation and protein oxidation in the organism correspondingly increased, indicating cellular injury. The mRNA and protein contents, and also the activities of different oxidant neutralizing enzymes such as CAT, SOD, GR, and GPx and the non-enzymatic antioxidants (proline, GSH, thiol and phytochelatin content) were found augmented in 20 ppm 2,4-DCP exposed cultures. However, in the presence of 40 and 80 ppm 2,4-DCP, most enzymatic and non-enzymatic antioxidants were severely compromised. At higher exposures, the organism's attempt to mitigate the oxidants was still visible, as both proline and TSH levels increased. SEM and TEM analysis aided in visualizing the effects of 2,4-DCP on the morphology and ultrastructures of the organism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call