Abstract
The antibacterial and anticancerous properties of EMTAHDCA have already been reported in our previous study. However, mode of action of EMTAHDCA is still elusive. The present study was aimed to investigate the molecular targets in Escherichia coli and spleen of lymphoma-bearing mice in response to cyanocompound 9-ethyliminomethyl-12 (morpholin-4-ylmethoxy)-5, 8, 13, 16-tetraaza -hexacene-2, 3- dicarboxylic acid (EMTAHDCA) isolated from fresh water cyanobacterium Nostoc sp. MGL001. Differential expressions of proteins were observed in both E. coli and spleen of lymphoma-bearing mice after EMTAHDCA treatment. In continuation of our previous study, the present study revealed that the antibacterial agent, EMTAHDCA causes the drastic reduction in synthesis of proteins related to replication, transcription, translation and transportation in E. coli. Probably the direct or indirect interaction of this compound with these important metabolic processes led to the reduction in growth and cell death. Furthermore, the anticancerous property of the compound EMTAHDCA reflected as down regulation in proteins of cell cycle, cellular metabolism, signalling, transcription and transport together with up regulation of apoptosis, DNA damage and immunoprotection related proteins in spleen of lymphoma-bearing mice. In this study the EMTAHDCA induced modulations in expression of proteins of key metabolic pathways in E. coli and spleen cells of lymphoma bearing mice helped in understanding the mechanism underlying the antibacterial and anti-cancerous property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.