Abstract

Graphitic carbon nitride (g-C3N4) based materials has been widely used for catalytic CO2 hydrogenation reaction. However, the catalytic activity is restricted due to the barren active sites and the weak ability to activate CO2 for the traditional g-C3N4. We demonstrate here that cyano group modified g-C3N4 supported Ru nanoparticles exhibits high activity and selectivity for CO2 methanation. The introduction of cyano group promotes the formation of medium basic sites for enhanced CO2 adsorption. Meanwhile, the formation of electron-rich Ru nanoparticles with the assistance of cyano group boosts the H2 activation. The synergistic effect of cyano group and Ru nanoparticles improves catalytic performance up to 14 times. Characterizations prove that cyano group with electron-withdrawing properties influences the way of CO2 adsorption via electron transfer and changes the CO2 hydrogenation reaction pathway. This work provides a new insight into the switching of CO2 hydrogenation pathway and enhanced catalytic activity via surface functional groups modification of g-C3N4 based catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.