Abstract

Several cyanine dyes were found to protect K562 leukemia cells against toxicity mediated by cis-di(4-sulfonatophenyl)diphenylporphine (TPPS2) and light. Most cyanine dyes derived from dimethylindole were better photoprotectors than cyanine dyes with other structures. This correlated with the fact that cyanine dyes derived from dimethylindole were predominately monomeric at millimolar concentrations within K562 cells, while other cyanine dyes formed aggregates. For cyanine dyes that are derived from dimethylindole and have absorption band wavelengths greater than 700 nm, fluorescence-energy transfer from TPPS2 to the cyanine dye was the most important mechanism for photoprotection. There was no spectroscopic evidence for complex formation between the cyanine dyes and TPPS2. The dimethylindole derivative, 1,1',3,3,3',3'-hexamethylindodicarbocyanine, was an excellent photoprotector, but a poor quencher of TPPS2 fluorescence and a relatively poor singlet-oxygen quencher. This cyanine dye may act by quenching excited triplet TPPS2. Singlet-oxygen quenching may contribute to the photoprotection provided by cyanine dyes not derived from dimethylindole. Differences in the subcellular distribution of the various cyanine dyes studied may have contributed to the different apparent mechanisms of photoprotection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.