Abstract

The Cyanidiales are unicellular red algae that are unique among phototrophs. They thrive in acidic, moderately high-temperature habitats typically associated with geothermally active regions, although much remains to be learned about their distribution and diversity within such extreme environments. We focused on Yellowstone National Park (YNP), using culture-dependent efforts in combination with a park-wide environmental polymerase chain reaction (PCR) survey to examine Cyanidiales diversity and distribution in aqueous (i.e. submerged), soil and endolithic environments. Phylogenetic reconstruction of Cyanidiales biodiversity demonstrated the presence of Cyanidioschyzon and Galdieria lineages exhibiting distinct habitat preferences. Cyanidioschyzon was the only phylotype detected in aqueous environments, but was also prominent in moist soil and endolithic habitats, environments where this genus was thought to be scarce. Galdieria was found in soil and endolithic samples, but absent in aqueous habitats. Interestingly, Cyanidium could not be found in the surveys, suggesting this genus may be absent or rare in YNP. Direct microscopic counts and viable counts from soil samples collected along a moisture gradient were positively correlated with moisture content, providing the first in situ evidence that gravimetric moisture is an important environmental parameter controlling distribution of these algae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.