Abstract

Cyanides and isocyanides of first-row transition metal M(CN) (M=Sc-Zn) are investigated with quantum chemistry techniques, providing predictions for their molecular properties. A careful analysis of the competition between cyanide and isocyanide isomers along the transition series has been carried out. In agreement with the experimental observations, late transition metals (Co-Zn) clearly prefer a cyanide arrangement. On the other hand, early transition metals (Sc-Fe), with the only exception of the Cr(CN) system, favor the isocyanide isomer. The theoretical calculations predict the following unknown isocyanides, ScNC(3Delta), TiNC(4Phi), VNC(5Delta), and MnNC(7Sigma+), and agree with the experimental observation of FeNC(6Delta) and the CrCN(6Sigma+) cyanide. First-row transition metal cyanides and isocyanides are predicted to have relatively large dissociation energies with values within the range 80-101 kcal mol(-1), except Zn(CN), which has a dissociation energy around 50-55 kcal mol(-1), and low isomerization barriers. A detailed analysis of the bonding has been carried out employing the topological analysis of the charge density and an energy decomposition analysis. The role of the covalent and electrostatic contributions to the metal-ligand bonding, as well as the importance of pi bonding, are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.