Abstract
Two respiratory mutants of the aerobic bacterium, Vitreoscilla, have been studied: a CO-resistant mutant that can grow in 50% CO-50% oxygen, and a cyanide-resistant mutant that can grow in 1 m m KCN. Wild-type cells are unable to grow under either condition. This report presents evidence that the resistance of the CO mutant is due to an altered membrane-bound cytochrome o [cytochrome o(m)], and that of the cyanide mutant is due to the presence of an increased amount of cytochrome d, which has a lower affinity for cyanide than cytochrome o(m). The evidence was obtained from spectral studies on the three types of intact cells as well as enzymatic and ligand-binding techniques on the cytoplasmic cytochromes o [cytochrome o(s)] and the respiring membrane vesicles isolated from these cells. Carbon monoxide difference spectra of intact cells revealed a 5-nm shift in an absorption maximum of a CO-binding pigment in the CO mutant relative to that of the wild type. The formation of oxygenated cytochrome o(s) and its conversion to the reduced form when the cells became anaerobic due to cellular respiration were inhibited when 1 m m KCN was added to a cell suspension of wild-type cells; the cyanide mutant cells showed resistance to cyanide in this experiment. Cytochrome o(s) purified from all three cell types had identical physical, electron transferring, and ligand binding properties within experimental error. Respiring membrane vesicles isolated from the two mutants showed more resistance to inhibition by cyanide and carbon monoxide than those from the wild type. Carbon monoxide difference spectra of these membrane vesicles revealed that there was a fivefold increase in the amount of cytochrome d in the cyanide mutant relative to the wild type. A CO absorption band of the membrane-bound cytochrome o in the CO mutant membrane vesicles showed a 5-nm shift relative to that of the wild type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.