Abstract

As an important bioactive component in plants, chlorogenic acid (CGA) has been widely studied for its potential role in human health. In this work, cyan fluorescent silicon quantum dots were successfully synthesized via a simple one-pot method for the rapid detection of CGA. The optimal excitation and emission wavelength of the obtained SiQDs was 350 nm and 470 nm, respectively. When the CGA was added, the maximum emission intensity of the SiQDs can be effectively quenched due to dynamic and static mixed quenching mechanisms. More significantly, there was a remarkable linear correlation between fluorescence quenching efficiency and a broad concentration of CGA solution range from 10 to 150 μmol/L with a limit of detection (LOD) of 0.43 μmol/L. Furthermore, the proposed SiQDs were successfully applied to analyze CGA in coffee beans and instant coffee after simple pretreatment with satisfactory results. Based on these, a high sensitivity and excellent selectivity fluorescent probe detection system was constructed, and it provides a valuable platform for the detection of CGA and has broad application prospects in the biological and pharmaceutical analysis field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.