Abstract

Cysteine (Cys) is a critically important amino acid, serving a variety of functions within proteins including structural roles, catalysis, and regulation of function through post-translational modifications. Predicting which Cys residues are likely to be reactive is a very sought after feature. Few methods are currently available for the task, either based on evaluation of physicochemical features (e.g., pKa and exposure) or based on similarity with known instances. In this study, we developed an algorithm (named HAL-Cy) which blends previous work with novel implementations to identify reactive Cys from nonreactive. HAL-Cy present two major components: (i) an energy based part, rooted on the evaluation of H-bond network contributions and (ii) a knowledge based part, composed of different profiling approaches (including a newly developed weighting matrix for sequence profiling). In our evaluations, HAL-Cy provided significantly improved performances, as tested in comparisons with existing approaches. We implemented our algorithm in a web service (Cy-preds), the ultimate product of our work; we provided it with a variety of additional features, tools, and options: Cy-preds is capable of performing fully automated calculations for a thorough analysis of Cys reactivity in proteins, ranging from reactivity predictions (e.g., with HAL-Cy) to functional characterization. We believe it represents an original, effective, and very useful addition to the current array of tools available to scientists involved in redox biology, Cys biochemistry, and structural bioinformatics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.