Abstract

Chronic obstructive pulmonary disease is the 3rd leading cause of death worldwide, and the available treatments are unsatisfactory, resulting in a major economic burden. As cellular therapy is commonly used for lung disease, we investigated a treatment with CXCR4-overexpressing BMSCs in a COPD model. We extracted and purified Bone marrow mesenchymal stem cells (BMSCs) from SD rats. COPD apoptosis model was established by cigarette smoke exposure. BMSCs (1 × 106 cells per injection)were transplanted in vivo twice a month during model establishment, and alveolar rupture in the lung was assessed. Lung cell apoptosis was assessed by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) analysis, and the concentrations of apoptotic proteins in the lungs were detected by Western blotting. We successfully isolated BMSCs and established CXCR4-overexpressing BMSCs. qRT‒PCR and Western blotting detection both reveal that CXCR4 mRNA level and protein both significantly higher expression in CXCR4-BMSCs than the pBABE-BMSCs. Continuous cigarette smoke exposure caused alveolar septal rupture: In the model group, the alveolar mean linear intercept in the first month was significantly lower than that in the third month (p < 0.05). In the third month, the alveolar mean linear intercept values of the control and CXCR4-BMSC groups were lower than those of the model group (control group p < 0.01, CXCR4-BMSC group p < 0.05), and TUNEL staining revealed that the apoptosis rates of the control and CXCR4-BMSC groups were significantly lower than those of the model group (p < 0.01). Furthermore, the levels of the apoptotic proteins cleaved caspase-8, cleaved caspase-3 and cleaved PARP-1 were higher in the model group than in the control group (p < 0.05) and significantly lower in the CXCR4-BMSC group than in the model group (p < 0.05). The transplantation of CXCR4-overexpressing BMSCs during COPD model generation significantly inhibited apoptosis via the extrinsic apoptosis pathway. CXCR4 enhances the inhibitory effects of bone mesenchymal stem cells on lung cell apoptosis in a rat model of smoking-induced COPD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call