Abstract
Regional differences in inflammation during viral infections of the CNS suggest viruses differentially induce patterns of chemoattractant expression, depending on their cellular targets. Previous studies have shown that expression of the chemokine CXCL10 by West Nile virus (WNV)-infected neurons is essential for the recruitment of CD8 T cells for the purpose of viral clearance within the CNS. In the current study we used mice deficient for the CXCL10 receptor, CXCR3, to evaluate its role in leukocyte-mediated viral clearance of WNV infection within various CNS compartments. WNV-infected CXCR3-deficient mice exhibited significantly enhanced mortality compared with wild-type controls. Immunologic and virologic analyses revealed that CXCR3 was dispensable for control of viral infection in the periphery and in most CNS compartments but, surprisingly, was required for CD8 T cell-mediated antiviral responses specifically within the cerebellum. WNV-specific, CXCR3-expressing T cells preferentially migrated into the cerebellum, and WNV-infected cerebellar granule cell neurons expressed higher levels of CXCL10 compared with similarly infected cortical neurons. These results indicate that WNV differentially induces CXCL10 within neuronal populations and suggest a novel model for nonredundancy in chemokine-mediated inflammation among CNS compartments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.