Abstract

Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by inflammatory back pain and spinal ankylosis due to pathological new bone formation. Here, we identified CXCL12 as a critical contributor to pathological new bone formation through recruitment of osteogenic precursor cells (OPCs). CXCL12 was found highly expressed in the regions that would potentially develop pathological new bone. OPCs were recruited to the regions where CXCL12 was up-regulated. Inhibition of CXCL12/CXCR4 axis with AMD3100 or conditional knockout of CXCR4 attenuated OPCs migration and subsequent pathological new bone formation in animal models of AS. By contrast, a genetically engineered animal model with CXCL12 overexpression developed a joint ankylosis phenotype. Furthermore, Rac1 was found essential for OPCs migration and pathological new bone formation. These findings ravel the novel role of CXCL12 in AS and indicate a potential strategy for targeting the CXCL12/CXCR4-Rac1 axis to prevent progression of axial skeleton ankylosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.