Abstract
The regulators of G protein signaling (RGS) protein superfamily negatively controls G protein-coupled receptor signal transduction pathways. One of the members of this family, RGS16, is highly expressed in megakaryocytes and platelets. Studies of its function in platelet and megakaryocyte biology have been limited, in part, due to lack of pharmacological inhibitors. For example, RGS16 overexpression inhibited CXC chemokine receptor 4 (CXCR4)-mediated megakaryocyte migration. More recent studies showed that the chemokine stromal cell-derived factor (SDF1α or CXCL12) regulates platelet function via CXCR4. Based on these considerations, the present study investigated the capacity of RGS16 to regulate CXCL12-dependent platelet function, using the RGS16 knockout mouse model (Rgs16−/−). RGS16-deficient platelets had increased protease activated receptor 4 and collagen-induced aggregation, as well as increased CXCL12-dependent agonist-induced aggregation, dense and alpha granule secretion, integrin αIIbβ3 activation and phosphatidylserine exposure compared to those from WT littermates. CXCL12 alone did not stimulate aggregation or secretion in either RGS16-deficient or WT platelets. Furthermore, platelets from Rgs16−/− mice displayed enhanced phosphorylation of ERK and Akt following CXCL12 stimulation relative to controls. Finally, we also found that PKCδ is involved in regulating CXCL12-dependent activation of ERK and Akt, in the Rgs16-deficient platelets. Collectively, our findings provide the first evidence that RGS16 plays an important role in platelet function by modulating CXCL12-dependent platelet activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.