Abstract

We previously showed that both high-mobility group box-1 (HMGB1) and natural killer (NK) cells contribute to respiratory syncytial virus (RSV)-induced persistent airway inflammation and airway hyperresponsiveness (AHR). Meanwhile, Chemokine (C-X-C motif) ligand 12 (CXCL12) and its specific receptor (chemokine receptor 4, CXCR4) play important roles in recruitment of immune cells. CXCL12 has been reported to form a complex with HMGB1 that binds to CXCR4 and increases inflammatory cell migration. The relationship between HMGB1, NK cells and chemokines in RSV-infected model remains unclear. An anti-HMGB1 neutralizing antibody and inhibitor of CXCR4 (AMD3100) was administered to observe changes of NK cells and airway disorders in nude mice and BALB/c mice. Results showed that the mRNA expression and protein levels of HMGB1 were elevated in late stage of RSV infection and persistent airway inflammation and AHR were diminished after administration of anti-HMGB1 antibodies, with an associated significant decrease in CXCR4+ NK cells. In addition, CXCL12 and CXCR4 were reduced after HMGB1 blockade. Treatment with AMD3100 significantly suppressed the recruitment of NK cells and alleviated the airway disorders. Thus, CXCL12/CXCR4 axis is involved in the recruitment of NK cells by HMGB1, contributing to persistent airway inflammation and AHR during the late stage of RSV infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.