Abstract

Glioblastoma (GBM) is the most aggressive primary malignant brain cancer and urgently requires effective treatments. Chimeric antigen receptor T (CAR-T) cell therapy offers a potential treatment method, but it is often hindered by poor infiltration of CAR-T cells in tumors and highly immunosuppressive tumor microenvironment (TME). Here, we armed an oncolytic adenovirus (oAds) with a chemokine CXCL11 to increase the infiltration of CAR-T cells and reprogram the immunosuppressive TME, thus improving its therapeutic efficacy. In both immunodeficient and immunocompetent orthotopic GBM mice models, we showed that B7H3-targeted CAR-T cells alone failed to inhibit GBM growth but, when combined with the intratumoral administration of CXCL11-armed oAd, it achieved a durable antitumor response. Besides, oAd-CXCL11 had a potent antitumor effect and reprogramed the immunosuppressive TME in GL261 GBM models, in which increased infiltration of CD8+ T lymphocytes, natural killer (NK) cells, and M1-polarized macrophages, while decreased proportions of myeloid-derived suppressor cells (MDSCs), regulatory Tcells (Tregs) and M2-polarized macrophages were observed. Furthermore, the antitumor effect of the oAd-CXCL11 was CD8+ Tcell dependent. Our findings thus revealed that CXCL11-armed oAd can improve immune-virotherapy and can be a promising adjuvant of CAR-T therapy for GBM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.