Abstract

Secretory IgA is a key host defense mechanism that controls the intestinal microbiota. We investigated the role of CD11c+CX3CR1+CD64+ macrophages in IgA production in the intestine. Intestinal CX3CR1+ macrophages directly induced IgA secretion by B cells. Ag delivery to lamina propria (LP) CX3CR1+ macrophages specifically induced intestinal IgA production. The induction of IgA by CX3CR1+ macrophages required BAFF, a proliferation-inducing ligand, and TNF-α, but was surprisingly independent of TLR-mediated microbial recognition and retinoic acid signaling. IgA secretion by CX3CR1+ macrophages was enhanced by LP CD8+ T cells through the secretion of IL-9 and IL-13. CX3CR1+ macrophages and CD8+ T cells induced IgA production by B cells independently of mesenteric lymph nodes and Peyer patches. Our data reveal a previously unrecognized cellular circuitry in which LP CX3CR1+ macrophages, B cells, and CD8+ T cells coordinate the protective Ig secretion in the small intestine upon peripheral Ag delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call