Abstract

Inappropriate expression of the chemokine CX3CL1 is reportedly known to act on inflammatory conditions in extraocular immune diseases. We studied the expression and effects of CX3CL1 in human patients, cultured human conjunctival cells, and transgenic mice exposed to benzalkonium chloride (BAC), a commonly used preservative in ophthalmic medications despite its proinflammatory properties, to determine whether CX3CL1 is involved in conjunctival inflammation. We report that CX3CL1 expression is increased in the conjunctiva of patients receiving BAC-containing medication, and correlates with clinical inflammation. BAC enhances the production of CX3CL1 in a conjunctival epithelial cell line, through the tumor-necrosis factor-α pathway, which attracts specific leukocyte subsets. In vivo, BAC-induced macrophage infiltration and subsequent inflammation of the conjunctiva is decreased in CX3CR1-deficient mice as compared with CX3CR1(+/+) controls. This translational study opens new avenue to investigate ocular surface disorders by focusing on chemokine-related inflammation and immune cell trafficking in the ocular conjunctival mucosa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call