Abstract

The catalytic wet peroxide oxidation (CWPO) of the industrial azo-dye methyl orange (MO) activated by an Al/Fe-pillared clay catalyst was optimized by the Response-Surface Methodology (RSM). Three sequential sets of factorial 2k central composite experiments were required for the full optimization of the process; catalyst loading and stoichiometric dose of hydrogen peroxide were the experimental factors studied through different times of reaction by means of all, Dissolved Organic Carbon (DOC) removal, Total Nitrogen (TN) removal, reacted fraction of hydrogen peroxide, and decolorization as experimental responses to be maximized. The resulting single-response RSM optimums were combined in a multi-response Desirability function ruling out the differential effect of adsorption on the catalyst's surface by defining all responses per gram of clay catalyst. Former two statistical sets of experiments (DOE-1 and DOE-2) showed the CWPO degradation of MO to get favored at increasing both catalyst loading and time of reaction (up to 180 min). Afterwards, third final design of experiments (DOE-3) displayed 75% of DOC removal, 78% of TN removal, 97% of reacted H2O2, and 95% of decolorization by using a catalyst loading of 5.0 g/L of Al/Fe-PILC together with just 50% of the stoichiometric amount of H2O2. The multi-response optimum conditions based on the Desirability function showed excellent fitting explaining at least 99.3% of the optimal overall responses at 95% of confidence. A further analysis revealed that no one of the non-controllable variables under real conditions of industrial wastewater treatment (covariates): starting total organic carbon (TOC) (2.0–20 mg/L), temperature (5.0–25°C) or circumneutral pH (6.0–9.0), exhibited statistically significant effect (P > 0.05), suggesting the system to be almost insensitive against them within studied range of close to ambient conditions in the tropic. Finally, HPLC/PDA and GC/FID measurements identified phenol, cyclohexa-2,5-diene-1,4-dione, phenylamine, N-methylaniline and N,N-dimethylaniline in very low concentrations as main intermediates in the CWPO degradation of MO, which nevertheless disappeared over 90 min of treatment. Meanwhile, 4-aminobenzenesulfonic and oxalic acids were recorded as unique by-products at final time of reaction, but both of them fairly less toxic than the starting azo-dye.

Highlights

  • In recent decades, the high growth of unacceptable levels of polluting substances in water has become a danger to the lives of human beings

  • The results obtained in the second statistical arrange of experiments designs of the catalytic experiments (DOE)-2 (Figure S2) showed that the amount of catalyst should be further increased and the H2O2 dose decreased in order to more closely approach the optimal set of conditions

  • A (H2O2/Fe) ratio between 0.56 and 4.70 was employed, along with a higher catalyst concentration (5.0–15 g/L) and a dose of H2O2 lower to the stoichiometric (50–75%) according to Equation (1), in order to obtain a proper curvature and the optimal point in the multiple-response surface ensuring the highest efficiency for the Al/Fe-PILC catalyzed Catalytic Wet Peroxide Oxidation (CWPO) degradation of methyl orange (MO) in the terms above explained, which enabled both, higher decolourization and mineralization (C and N) as well as the lower cost thanks to the improvement of the reacted fraction of dosed hydrogen peroxide, in other words, yielding the highest possible use of the reagent by the catalytic system

Read more

Summary

INTRODUCTION

The high growth of unacceptable levels of polluting substances in water has become a danger to the lives of human beings. The effect of the main reaction variables (concentration of catalyst and dose of hydrogen peroxide) on the MO mineralization were determined from the Dissolved Organic Carbon (DOC) and Total Nitrogen (TN) removals, decolorization, and reacted fraction of the added hydrogen peroxide For such a purpose it has been employed a Central Composite Design (CCD) of experiments, reported as one of the best strategies in statistical process optimization (Arslan-Alaton et al, 2009; Azami et al, 2013; Chen et al, 2014). Each sample was immediately microfiltered (φ = 0.45 μm, PVDF filters) after being collected and reserved for following analyses: (i) colorimetric (466 nm), (ii) remaining concentration of free peroxide, (iii) Dissolved Organic Carbon (DOC) and (iv) Total Nitrogen (TN); besides, (v) HPLC/PDA, and (vi) GC/FID were further measured in the samples taken from a couple of catalytic experiments developed under the set of optimal conditions released from the multi-response statistical optimization. Following standards were used to calculate response factors: Phenylamine (Mallinckrodt, 99.99%), N-methylaniline (Sigma-Aldrich, ≥99%), N,N-dimethylaniline (Sigma-Aldrich, 99.57%), N,N-dimethyl-p-phenylenediamine (Alfa Aesar, 96%), 3-Dimethylaminophenol (Alfa Aesar, 97%)

RESULTS AND DISCUSSION
CONCLUSIONS
DATA AVAILABILITY STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call