Abstract

The delayed outcome issue is common in early phase dose-finding clinical trials. This problem becomes more intractable in phase I/II clinical trials because both toxicity and efficacy responses are subject to the delayed outcome issue. The existing methods applying for the phase I trials cannot be used directly for the phase I/II trial due to a lack of capability to model the joint toxicity-efficacy distribution. In this paper, we propose a conditional weighted likelihood (CWL) method to circumvent this issue. The key idea of the CWL method is to decompose the joint probability into the product of marginal and conditional probabilities and then weight each probability based on each patient's actual follow-up time. The CWL method makes no parametric model assumption on either the dose-response curve or the toxicity-efficacy correlation and therefore can be applied to any existing phase I/II trial design. Numerical trial applications show that the proposed CWL method yields desirable operating characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.