Abstract
Desert railways are constantly exposed to incoming sand blown by the wind. The railway body acts as an obstacle that perturbs the wind flow and the sand drift, resulting in zones of sand sedimentation and erosion. The insight into the local flow around the railway track and resulting sedimentation patterns is a necessary prerequisite to predict and prevent sand-induced limit states.The present study generally aims at filling such a gap, by investigating the local flow and the related potential sedimentation patterns around railways. The knowledge acquired about such patterns is required in the perspective of the design of innovative on-track Receiver Sand Mitigation Measures. The study adopts a Computational Wind Engineering approach to simulate the local wind flow, to obtain the shear stress field at the ground, to derive from it sand sedimentation/erosion patterns, and to obtain bulk performance metrics. The performances of different railway substructures and track systems are discussed under different incoming wind speeds and yaw angles. The simulated sedimentation/erosion patterns qualitatively agree with the field evidences observed along desert railways. The comparative analysis shows that rails elevated by humped sleepers or slab on top of a gentle-sloped substructure perform better than other track systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering and Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.