Abstract

Colloidal nanoparticles suspensions (nanofluids) are the materials of consideration for thermal engineering due to their typically enhanced heat transportation characteristics in comparison to base liquid. Nanoliquids have utilizations in transportation, solar absorption, nuclear systems chilling, friction reduction and energy storage etc. Besides, magnetic nanoliquids are utilized in the cancer therapeutics via implementation of drug delivery and cancer imaging. Thus, in view of such utilizations, here modeling and simulations are presented to scrutinize the natural convective Fe3O4-water nanoliquid flow in an annulus between a triangle and a rhombus enclosures. Thermal radiation aspect is considered for formulation. CVFEM is implemented for computations of numerical outcomes. Impacts of embedding variables on the flow and heat transfer features have been perused. Furthermore a correlation for average Nusselt number is established in terms of energetic parameters. The obtained results portray that average Nusselt number rises subjected to Rayleigh number, radiation parameter and volume fraction of nanofluid while it diminishes when Hartmann number is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call