Abstract

<h2>Summary</h2> Porous Cu/Ni foils were made by electroplating Ni on Cu foils and used as templates for chemical vapor deposition growth of porous graphene foam. The walls in the graphene foam were found to be two to five graphene layers thick, interconnected to form a low-density porous network with a wide distribution of pore sizes and a high electrical conductivity. A comprehensive comparison with previously studied materials for electromagnetic interference (EMI) shielding showed that this graphene foam is among the best EMI shielding materials; its specific EMI shielding effectiveness (>720 dB cm<sup>3</sup> g<sup>−1</sup>) and absolute effectiveness (>45,000 dB cm<sup>2</sup> g<sup>−1</sup>) are superior to those of most other materials. This graphene foam has a large absorption capacity for various organic solvents and oils and adsorbs them within seconds. The synthesis strategy should provide a general approach for generating other 3D porous structures, including those based on a variety of known 2D materials, for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.