Abstract

In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS2. µ‐Raman, µ‐photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS2 films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain‐boundaries. magnified image

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.